Figure 1: Plant for extraction of lubricant oils with phenol

Figure 2a: Analyzer of the concentration of phenol

Figure 2b: Block Diagram and Main Functions of the Smart Sensor [9]

Figure 3: RMSE by Number of Neurons with Regression

Figure 4: MAXE by Number of Neurons with Regression

Figure 5: RMSE by Number of Correlated and Dispersing Neurons

Figure 6: MAXE by Number of Correlated and Dispersing Neurons

Figure 7: RMSE for Expert Model

Figure 8: MAXE for Expert Model

Figure 9: RMSE for Número de Neuronas con Regresión

Figure 10: MAXE for # de Neuronas con Regresión

Figure 11: RMSE by Number of Correlated and Dispersing Neurons

Figure 12: MAXE by Number of Correlated and Dispersing Neurons

Figure 13: RMSE for Expert Model

Figure 14: MAXE for Experto Model

Figure 15: Behavior of the Cloned Sensor (Area of Training with 1000 samples and Validation of the remaining ones) [9]

Figure 16: Preparation process

Figure 17: Diagram of applied methodology with Prototype Manufacturing Steps [16]

Figure 18: Rectangular Rosette

Figure 19: Delta Rosette

Figure 20: Delta T Rosette

Figure 21: Samples of structured nanowires with 6% polymer concentration

Figure 22: Samples of structured nanowires with 8% polymer concentration

Figure 23: Samples of structured nanowires with 10% polymer concentration

# NEUR

RMSE

MAXE

1

0.0017439

0.0033676

3

0.0013600

0.0031367

5

0.0015836

0.0035062

7

0.0019241

0.0061608

10

0.0013473

0.0058143

20

0.0018437

0.011341

30

0.0020754

0.031088

40

0.0058415

0.12686

Table 1: Experiment Results For Models

# NEUR

RMSE

MAXE

3

0.0010291

0.0027133

5

0.0011054

0.0024877

10

0.003029

0.012585

12

0.00096497

0.012741

15

0.0036674

0.0073696

20

0.00072544

0.0071936

Table 2: Results Of The Experiments With The Model By Correlation And Dispersion Experiment Results For Model [10]

# N

RMSE

MAXE

5

0.0019238

0.003634

10

0.0017794

0.0037834

12

0.0016122

0.0035634

15

0.0021772

0.0071826

20

0.0035932

0.020569

Table 3: Results of the experiments with the expert model

MODELS

#N

MAXE

CORRELATION-DISPERSION

5

0.0034794

Table 4: Experiment Results For Models

MODELS

#N

RMSE

MAXE

CORRELATION-DISPERSION

5

0.0010612

0.0034794

Table 5: Diferent Models For Optimization

W1

V6

V7

V10

V14

V15

N#1

-0

6

4

3

4

N#2

11

-6

-4

1

6

N#3

9

-7

6

-1

0

N#4

4

-6

1

3

5

N#5

9

-1

-2

2

-5

W1

V17

V18

V32

V44

V63

N#1

12

-10

342

63

-1071

N#2

-6

-14

-457

-58

312

N#3

-6

11

-65

12

1017

N#4

9

-8

-923

-126

117

N#5

6

-6

1036

-51

549

Table 6: Input Weights

W2

0.0330

-0.0532

0.0284

0.0168

0.0039

Table 7: Output Weights

# NEUR

RMSE

MAXE

1

0.0017439

0.0033676

3

0.0013600

0.0031367

5

0.0015836

0.0035062

7

0.0019241

0.0061608

10

0.0013473

0.0058143

20

0.0018437

0.011341

30

0.0020754

0.031088

40

0.0058415

0.12686

Table 8: Results Of The Regression Model Experiments

# NEUR

RMSE

MAXE

3

0.0010291

0.0027133

5

0.0011054

0.0024877

10

0.003029

0.012585

12

0.00096497

0.012741

15

0.0036674

0.0073696

20

0.00072544

0.0071936

Table 9: The Rawn (Neural Network) [9]

MODELS

#N

RMSE

MAXE

CORRELATION-DISPERSION

5

0.0010612

0.0034794

Table 10: RMSE Y Maxe For Training In The Area That Covers The Samples From 4000 To 5000

# N

RMSE

MAXE

5

0.0019238

0.003634

10

0.0017794

0.0037834

12

0.0016122

0.0035634

15

0.0021772

0.0071826

20

0.0035932

0.020569

Table 11: Results Expert Model

MODELS

#N

RMSE

MAXE

 

REGRESSION

10

0.0013473

0.0058143

CORRELATION-DISPERSION

5

0.0011054

0.0024877

EXPERT

12

0.0016122

0.0035634

Table 12: Comparison of Different Models

6%

H2O = 86.4 g

PVA = 5.4 g

8%

H2O = 82.8 g

PVA = 7.2 g

10%

H2O = 81 g

PVA = 9 g

Table 13: Sampling References